
Wikiprint Book

Title: Tworzenie własnych komend

Subject: eDokumenty - elektroniczny system obiegu dokumentów, workflow i CRM -
DeployerGuide/Customization/ProcessAutomation/PluginsCommands

Version: 6

Date: 01/18/26 08:44:43



WikiPrint - from Polar Technologies

2

Table of Contents

Tworzenie własnych komend 3



WikiPrint - from Polar Technologies

3

Tworzenie własnych komend

Plik o nazwie kończącej się na Command (np. MyfirstCommand.inc) nalezy wgrać do katalogu apps/edokumenty/commands/

Należy zmienić nazwę klasy i zaimplementować metodę execute.

<?php 

require_once(COMMANDS_DIR.'AbsCommand.inc'); 

 

/** 

* ExampleCommand 

* Szablon komendy dla Workflow. 

* Należy zaimplementować następujące metody z interfejsu ICommand: 

*      - getDescription 

*      - getExpandedDescription 

*      - getCommandApi 

*      - execute 

* Opis metod poniżej w definicji. 

* 

* Dodatkowo z klasy AbsCommand mamy do dyspozycji: 

*  - $this->action - bean PSAction tabela proc_actions 

*  - $this->stageBean - bean etapu StageOfProc tabela stages 

*   

*  - $stage = $this->getStageDefObj() - zwraca obiekt (klasy Bean) definicji etapu jaki jest wykonywany czyli dane z stages_def - definicja etapu 

*  - $procedure = $this->getProcedure() - zwraca obiekt (klasy Bean) procedury (tabela procedures) * 

*  

* @uses AbsCommand 

* @uses ICommand 

* @final 

* @author Tomasz Świenty  

* @version 0.1 

* @copyright Copyright (c) BetaSoft 

*/ 

final class ExampleCommand extends AbsCommand implements ICommand { 

 

 

 

   /** 

    * getDescription 

    * Metoda zwracająca nazwę komendy (krótki opis). Nazwa ta pojawia się na liście wyboru komend. 

    *  

    * @static 

    * @access public 

    * @return string 

    */ 

   public static function getDescription() { 

 

       return Translator::translate('Moja nowa komenda'); 

 

   } 

 

 

 

   /** 

    * getExpandedDescription 

    * Metoda zwracająca dłuższy opis komendy. Może zawierać znaki HTML. 

    *  

    * @param string $params - lista parametrów w formacie json (na razie nie jest obsługiwane) 

    * @static 

    * @access public 

    * @return string



WikiPrint - from Polar Technologies

4

    */ 

   public static function getExpandedDescription($params = NULL) { 

 

       return Translator::translate('Moja nowa komenda - rozszerzony opis');  

 

   }   

 

 

 

   /** 

    * getCommandApi 

    * Metoda zwracająca API komendy domyślnie jest implementowana przez AbsCommand i zwraca pustą tablicę. 

    * Format api to tablica asocjacyjna, której kluczami głównymi są nazwy parametrów (najczęściej 6 znakowe) a każdy z tych kluczy 

    * posiada definicję parametru również w postaci tablicy. 

    * 

    * Definicja parametru określana jest przez 3 atrybuty (klucze) 

    *  - (strint)label - krótka nazwa parametru 

    *  - (strint)dscrpt - dokładniejszy opis parametru 

    *  - (bool)required - oznaczenie czy parametr jest wymagany 

    * 

    * Dodatkowo w tej tablicy (głównej) może się pojawić klucz example, które podaje przykład listy parametrów - jednak od wersji  

    * 3.7 jest to zbędne gdyż parametry są definiowane w dedykowanym formularzu i przechowywane są w formacie json a nie csv! 

    *  

    * @param string $params - lista parametrów w formacie json (na razie nie jest obsługiwane) 

    * @static 

    * @access public 

    * @return array 

    */ 

   public static function getCommandApi($params = NULL) { 

 

       $api = array( 

           'contid' => array( 

               'label'     => Translator::translate('Kontrahent'), 

               'dscrpt'    => Translator::translate('identyfikator kontrahenta (contacts.contid, <b>Lista kontrahentów -> Kolumna Id</b>) domyślnie jest przepisywany z kontekstu procedury'), 

               'required'  => TRUE,                 

           ),     

           'example' => 'contid="1"' 

       ); 

 

       return $api; 

 

   } 

 

 

 

   /** 

    * execute 

    * Metoda odpowiedzialna za wykonanie komendy. 

    * Poniżej znajdują się też najważniejsze rzeczy jakie trzeba zrobić! 

    *  

    * @param Bean $bean - obiekt formularza dokumentu albo sprawy do dyspozycji w tym obiekcie mamy wartości z pól  

    * danego formularza (tabele documents (wraz z dodatkowymi tabelami), processes). 

    * Wartości pobieramy metodą $bean->get('dscrpt'); 

    * @param string $params - lista parametrów jaka została zdefiniowana dla tej komendy w konkretnej procedurze. 

    * @access public 

    * @return bool|CommandException 

    */ 

   public function execute(Bean $bean, $params) { 

 

       // parsowanie parametrów oraz przekazanie kontekstu beana 

       // po wykonaniu tego mamy do dyspozycji atrybut $this->params zawierający tablicę sparsowanych parametrów  



WikiPrint - from Polar Technologies

5

       // (jeśli parametr jest w formacie SQL to w tablicy będzie dostępny wynik zapytania, jeśli np featid::89 to wartość cechy) 

       parent::parseParams($params, $bean);         

 

       // jeśli do działania komendy wymagane są jakieś parametry a użytkownik ich nie podał lub nie udało się 

       // ich sparsować to należ wykonać poniższe sprawdzenie 

       // Wyjątek CommandException przerywa działanie komedny! 

       if ((empty($params)) OR (!is_array($this->params))) { 

           $this->setMessage(Translator::translate('Komenda nie może zostać wykonana ze względu na brak parametrów lub nieudanej próbie ich utworzenia.'), 'WARNING'); 

           $this->setMessage(Translator::translate('Komenda nie została wykonana.'), 'ERROR'); 

           throw new CommandException($this); 

       } 

 

       // api komendy do weryfikacji parametrów 

       $api = self::getCommandApi(); 

 

       // walidajca parametrów 

       if ((!array_key_exists('contid', $this->params)) OR (!is_numeric($this->params['contid']))) { 

           $this->setMessage(sprintf(Translator::translate('Komenda nie może zostać wykonana ze względu na brak parametru contid - %s.'), $api['contid']['dscrpt']), 'WARNING'); 

           $this->setMessage(Translator::translate('Komenda nie została wykonana.'), 'ERROR'); 

           throw new CommandException($this); 

       } 

 

       // klucz główny tabeli doc_id lub prc_id (kontekst procedury) 

       $keyval = $bean->getPkeyValue(); 

 

       // $this->action - bean PSAction tabela proc_actions 

       // $this->stageBean - bean etapu StageOfProc tabela stages 

 

       // Zwraca obiekt (klasy Bean) definicji etapu jaki jest wykonywany czyli dane z stages_def - definicja etapu 

       $stage = $this->getStageDefObj(); 

 

       // Zwraca obiekt (klasy Bean) procedury (tabela procedures) 

       $procedure = $this->getProcedure(); 

 

       // Informacja o tym co zostało zrobione 

       $this->setMessage(sprintf(Translator::translate('Kontakt o identyfikatorze %d został dodany do dokumentu.'), $this->params['contid']), 'SUCCESS'); 

 

       return TRUE; 

 

   }  

 

} // class ExampleCommand 

 

?> 


	Tworzenie własnych komend

